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INTRODUCTION

PREDICTIVE INFECTIOUS-DISEASE MODELS

Infectious disease emergence is a complex and
dynamic process involving biologic,
environmental, social, economic, and other
factors. Predictive infectious-disease models
are used to understand and anticipate disease
emergence and predict the time, size, and spatial
spread of a disease epidemic. Decisionmakers
use predictive infectious-disease models to
prepare for and potentially prevent epidemics,
plan and evaluate disease control strategies and
methods, and allocate resources. During an
epidemic, however, decisions should be based
on the most accurate information possible from
the epidemic rather than on the output of a

model with hypothetical inputs.

Given the broad range of modeling objectives,
model types, and methodologies available,
organizations interested in model development
to anticipate disease emergence can use this
report for strategic planning. First, this report
discusses important considerations for
developing predictive infectious-disease
models. Next, the report provides a brief
overview of model types and methodologies
used to predict known and new (previously
unrecognized) infectious diseases of animals
and humans. Finally, it describes examples of

early warning systems utilizing models.

Important Considerations for Development
of Predictive Infectious-Disease Models

Predictive models can be classified in several
different ways. Strategic models yield broad
generalizations, have wide applicability, and
describe qualitative behaviors (Puccia et al.
1994). Strategic models are useful when the

current state of knowledge is inadequate for
precise parameter measurements and when the
scope of the question being asked is global or
crosses disciplinary boundaries. For example,
the model that emerging diseases result from the
interaction of the many biologic, environmental,
social and economic emergence factors

(described on p. 11) is a strategic model.

In contrast, tactical models give precise results
and rely on specific information, detailed
knowledge, and accurate measurements.
Tactical models tend to yield practical
information that can guide specific intervention
efforts. The nasal bot fly model (described on
p. 8) is a good example of a tactical model. The
bot fly model uses precise soil-temperature data
to pinpoint a specific date when bot fly larvae
will emerge from pupal cases. The best
approach for a complex situation, such as the
emergence of new diseases, may be to combine

strategic and tactical modeling.

Another way to classify predictive infectious-
disease models is into mathematical or
statistical model types. Complex models may
integrate the use of both mathematical and
statistical approaches into a single model.
Mathematical models focus on simulating the
dynamics of a disease agent’s life cycle,
including the process of disease transmission as
it progresses through a host population in time
and space, and therefore, are also known as
process-based, mechanistic, disease-
transmission, disease-spread, or population
models. There is a mathematical relationship
hetween the variables in the model based on

knowledge of the underlying biophysical
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mechanisms, thus the term mathematical model.
For example, the changing numbers of
susceptible, infected, and immune hosts in a
population over time can be estimated using
differential calculus.

Statistical or empirical models focus on the
search for a statistical relationship between
factors through the statistical analysis of a data
set for a defined population. Examples of
factors potentially having a statistical
relationship with disease incidence include
characteristics of the host, such as age or sex,
and characteristics of the environment, such as
landscape or climate. Those factors having a
statistically significant relationship or
association with a disease are often called “risk
factors.” Two factors being compared
statistically could also be disease incidence

rates at different time periods.

The limitations of models must be kept in mind.
A model is a representation of a real system and
is usually a simplification of that system.
Models must be validated with data not used in
their construction to establish to what extent
they behave similarly to the real system they are
modeling. Also, disease emergence models
should make biological sense. Sensitivity
analysis of a model is necessary to determine
the sensitivity of the model’s output to poor-
quality data and to known variability in system
parameters. A model that is highly sensitive to a
parameter for which the data are of poor quality
should not be used in decisionmaking.
Decisionmakers should keep in mind the quote
attributed to George Box that “all models are
wrong, but some models are useful” (Taylor,
2003).

Answering the following questions will
facilitate the development of predictive

infectious-disease models.

* Why? Determine the primary objective for
developing the model.

The type of modelsselected will depend on the
objective or purpose for the model. A process-
based model is most effective if the objective is
to predict the transmission and spread of a
specific disease. An associative-based model,
such as the risk-factor model, is most effective
if the objective is to determine the attributes of
the disease host and the environment that alter
the probability of acquiring disease.

* What? Determine the disease or outcome
of interest and the predictive factors likely to

be associated with the outcome.

Quantitative modeling methods require the
selection of a dependent outcome variable,
which is usually a specific disease. Sufficient
and reliable data about the incidence of the
disease is needed for statistical modeling. The
independent variables (predictors) must be
researched and selected, and reliable data must
be available.

* Where? Determine study area and scale.

A specific geographic area of interest must be
defined. Data on the dependent and
independent variables of interest must be
available in the entire area and at the same
scale. This is especially important for models

based on risk mapping.
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e When? Determine time period of interest.

Two time periods must be determined, one that
looks to the future and one that looks to the
past. The “future” time period relates to the
predictive objective and whether the goal is a
short-term or long-range forecast. The “past”
time period relates to the historical data
available on the dependent and independent
variables needed to create and test a valid
model.

* How? Determine specific analytical
methods.

The analytical methods implemented will
depend on the type of model selected and the
type of data available.

* Who? Determine who will benefit and
what actions could be taken using the model

results.

The information produced by the model should
be validated, useful to relevant decisionmakers,
and linked to response initiatives. Short-term
forecasts are useful in helping health services
prepare for increased case numbers, whereas
long-term forecasts are useful for strategic
control of disease. The value of the early
warning, both in human and economic terms,

should be determined.
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INFECTIOUS DISEASE MODELING
OBJECTIVES AND MODEL TYPES

OBJECTIVE: PREDICT DISEASE SPREAD DURING AN EPIDEMIC

Many types of mathematical analytic methods
can be used to model disease spread in a
population, including matrix and network
methods. However, models that employ
differential calculus methods have been more
commonly used and are particularly suitable for
diseases transmitted by the direct mode (i.e.,
animal to animal) (Thrusfield 1995). The SEIR
model is a popular modeling framework
utilizing differential calculus methods (National
Research Council 2001) (fig. 1). SEIR is
considered a “compartment” or “‘state-
transition” model because it divides the host
population into four compartments or groups of
different states. The initial letter of each
compartment forms the name of the model:

1. Susceptibles (S)—the group susceptible to
infection;

2. Exposed (E)—the group exposed to an
infectious agent but not yet infectious;

3. Infectious (I)—infectious group; and

4. Recovered (R)—the group recovered,

immune, or dead.

The mathematical analytic method used for
SEIR modeling involves a series of differential

equations that describe the rate of change from

one compartment or state to another as a
function of the relative proportions in each
compartment. Other disease- and population-
specific parameters determined from laboratory
and field observations are part of the model,
such as the transmission rate and the average
duration of infection and immunity (National
Research Council 2001). The rate of contact
between infectious and susceptible population
groups and the transmission rate determine the
rate of going from the susceptibie to the
infected categories. A stochastic component
can be added to the SEIR model to incorporate
random variation and chance (King and
Soskolne 1988). A spatial component also can
be added to the model.

Another important parameter for epidemic
mathematical modeling is the basic
reproductive number, defined as the number of
secondary infections produced by the first
infective individual to appear in the population
(Dobson and Foufopoulos 2001). A basic
reproductive number of less than I indicates
that the epidemic can not be sustained. A basic
reproductive number higher than [ indicates

that an epidemic will continue.
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Figure 1-—SEIR model framework. (Adapted from National Research Council 2001.)
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SEIR modeling has been used to predict the
spread of animal diseases such as foot-and-
mouth disease (FMD) and classical swine fever,
and human diseases such as measles and

influenza.

For example, in 2001, SEIR epidemic modeling
was used during the FMD epidemic in the
United Kingdom to predict disease spread and
rank the potential effects of different
interventions on the spread of FMD (Ferguson
et al. 2001, Keeling et al. 2001).

To simulate an FMD epidemic in the United
States, Schoenbaum and Disney (2003) created
a stochastic state-transition model that includes
spatial and economic components. This model
can be used to evaluate alternative mitigation
strategies and their epidemiologic and economic

consequences. A disease-spread simulation

mode] for FMD known as InterSpread (Sanson
1993) was developed originally in New Zealand
and adapted for FMD in the European Union.
InterSpread also has been adapted to model
classical swine fever (CSF) in the European
Union (Jalvingh et al. 1999).

Disease-spread models are used to prepare and
plan for potential epidemics and examine
various control strategies in “what if”" situations.
After reviewing the use of models for
establishing disease-control policies during the
2001 FMD epidemic in the United Kingdom,
Taylor (2003) concluded that tactical decisions
during epidemics should be based on field data
and not on complicated simulation models,
which may not accurately reflect the true
situation on the ground. After an epidemic is
over, disease spread models are useful for
retrospective analysis to improve knowledge of

epidemic behavior.
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OBJECTIVE: PREDICT WHEN AND WHERE AN EPIDEMIC OF A KNOWN
DISEASE WILL OCCUR IN AN ENDEMIC AREA

To predict when and where a new epidemic of a
known endemic disease will occur, past patterns
or trends in disease incidence are identified and
projected into the future (Myers et al. 2000).
For endemic diseases, mathematical SEIR-type
models can be used to forecast the time and size
of epidemic recurrences. Statistical modeling
approaches also are available to predict endemic
disease epidemics.

Three of the most common statistical
approaches are time-series, algebraic, and
regression models (Nobre and Stroup 1994).
Time-series models compare historical data
(usually disease incidence) to current data,
using the correlation structure of the data.
Algebraic models estimate expected numbers of
cases based on past cases and compare these to
actual observations. Regression models
investigate the causal or risk factors related to
an epidemic. Other statistical approaches
include an exponential smoothing forecasting
system, whereby a tracking signal statistic is
computed to indicate when the process is
different from past observation, and Bayes’
Theorem-based methods, which provide
distinctions between the epidemic state and the
nonepidemic state. A stochastic component to
incorporate random variation and chance can be

added to models, as appropriate.

To compare and contrast the ability of the
models to predict epidemics, Cliff and Haggett
(1993) applied data from measles epidemics in
Iceland to eight different model types. They

found that no single model accurately predicted

both epidemic recurrences and epidemic size.
Models that performed well at predicting time
of recurrence tended to overestimate outbreak
size; models that accurately predicted outbreak
size failed to predict time of recurrence
accurately. However, adding time-varying
parameters, spatial lead-lag structures, and
local small-area data on susceptible populations
helped alleviate these problems.

A time-series model known as the
Autoregressive Integrated Moving Average was
used by Watier et al. (1991) to define an alert
threshold for foodborne Salmonella epidemics
(S. bovismorbificans) in France. To determine
an alert threshold for influenza epidemics in
Belgium, Snacken et al. (1992) used a
regression model that compared observed
values for a determined period with expected
values and adjusted for seasonal variation and
secular trends. Zeng et al. (1988) used Bayes’
Theorem methodology to create a model to

predict epidemic meningitis in China.

When detailed information is available on the
geographic location of cases, spatial models can
be used to predict endemic disease epidemics.
Incidence mapping is used to show the
geographic distribution of disease. and a
temporal component can be included as well.
Individual cases (case event data) can be
mapped, or individual cases can be counted and
ascribed to a defined geographic area, such as a
county. Mapping of standardized discase rates
can indicate geographic differences in disease

risk and allow comparisons of discase risk

6 m Infectious Disease Modeling



Objectives and Model Types

across geographic areas. To standardize disease
rates, however, data on the population at risk
must be available. Disease mapping can
identify “hot spots” but does not answer the
question as to why the hot spots occurred in a

particular location.

Ecologic risk-map modeling is a spatial method
used to identify risk factors that might indicate
why a hot spot has occurred in a particular
location. Various potential risk factors-——such
as environmental, demographic, or economic
information—can be related to geographic
disease-incidence data. Relationships between
these predictive factors and the disease-
incidence data can be used to predict risk in
areas without current disease. For example,
during the U.S. 2002-03 exotic Newcastle
disease (END) epidemic, risk-map modeling
was used to predict geographic areas at risk for
END infection (Freier et al. 2004). In
California, five demographic variables
(population density, ethnic distribution, median
home value, population under 17, and median
household size) differed significantly among

areas affected with END and areas unaffected.
These variables (cri{eria) were used to rank the
likelihood of whether or not areas had backyard
poultry (fig. 2). In addition, the risk- map model
used variables such as proximity to animal feed
stores and poultry suppliers, and zoning code
violations such as excess poultry, illegal bird
fights, and noisy birds, to make predictions
about areas with infected premises.

Biological risk maps focus on biological
relationships among organisms during the
period leading to disease epidemics. This
model has been used primarily for vector-borne
diseases such as malaria, dengue, and Rift
Valley fever (RVF) and diseases such as
hantavirus pulmonary syndrome and plague,
which are associated with rodent populations.
Climatic, environmental, and ecologic factors
affecting vector populations are used to predict
disease risk. Biological risk-map models can
combine both mathematical (population
dynamics) models with statistical (risk factor)

models.
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Figure 2—Results from a risk model for END based on demographic characteristics in southern

California in 2003. (Adapted from Freier et al. 2004.)
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Often, data on environmental and ecologic
factors are obtained through remote-sensing
satellites. For example, in Namibia the
emergence of nasal bot fly larvae from pupal
cases is directly dependent on the number of
degree-days that the soil is above a particular
threshold temperature. Soil-temperature data
received from satellites are used to predict the
emergence of bot flies (which infect small
stock), allowing farmers in high-risk areas to
treat their livestock with larvicides at the most
opportune time (Flasse et al. 1998).

Remote-sensing data combined with geographic
information-systems modeling have been used
to predict epidemics of RVFE, a mosquito-borne
disease that affects domestic animals and
humans in East Africa. RVF epidemics follow
periods of widespread, heavy rainfall, which
create habitats for the transovarially infected
Aedes mosquito eggs. Linthicum et al. (1999)
found that a model using Pacific and Indian
Ocean surface temperature anomalies—coupled
with normalized-difference vegetation-index
data from satellite photography—-could predict
RVF epidemics in East Africa up to 5 months in
advance.

8 m Infectious Disease Modeling
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OBJECTIVE: PREDICT WHEN AND WHERE A KNOWN DISEASE WILL OCCUR
IN A NONENDEMIC AREA .

Information gained from disease models on
explanatory or predictive factors in endemic
areas can be used to look for similar patterns
and factors in nonendemic areas. For example,
mapping vector distributions and environmental
factors can help predict which geographic areas
are at risk for vector-borne disease spread.
Baylis et al. (2001) vsed satellite imaging data
to predict areas around the Mediterranean that
were at risk for bluetongue, by modeling the
distribution of the bluetongue vector Culicoides

imicola.

Geographic information systems (GIS) and
spatial analysis tools have been used to identify
the range of environmental conditions in Africa
that support the bont tick (Amblyomma
hebraeum), a major vector of heartwater disease
in ruminants (Joy et al. 2004). Two modeling
methods were used: stepwise decision-tree
classification and logistic regression. The
environmental variables associated with bont-
tick habitat in Africa included elevation,
temperature, and precipitation. Using this
information, U.S. areas at risk of bont-tick
introduction were modeled. Both the
classification-tree and the logistic models
predicted that the bont tick could survive in
parts of 29 States, the majority of which were in
the Pacific Northwest.

However, results did differ between the two
models. The classification-tree model targeted
parts of the upper Midwest and the Northeast,
whereas the logistic model targeted parts of the

southern and eastern coastlines.

The risk assessment model (a.k.a. risk analysis
model) is also used to predict disease spread.
This model focuses on specific pathways of
pathogen introduction. Risk assessment is often
used to evaluate the risk of disease introduction
from imported animals or animal products; it is
used commonly by regulatory officials in
importing countries, including the United
States. The first step in risk assessment is
hazard identification, which involves
identifying the pathogenic agents associated
with the importation of an animal or commodity.
In addition, nisk assessments often conduct
pathways analyses, systematic assessments of
the pathways in which exotic disease agents
might be introduced. Pathways analyses require
knowledge of the agent’s biology and
distribution; import source and quantity of risk
products; emigration and tourist flow; and the
production and distribution systems of the
livestock industries at risk (National

Agricultural Biosecurity Center Consortium
2004).

The quantitative analytic method used
commonly for this type of risk assessment is
likelihood estimation based on conditional
probabilities using scenario trees (fig.3).
Scenario trees outline each step a pathogen
would take in its path from exporting country to
importing country, with a probability assigned to
each step. Data on disease incidence in the
exporting country, diagnostic test sensitivity
and specificity, and other relevant data such as
agent survivability, are used to determine

probabilities. These probabilities are then
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multiplied to arrive at the risk of introduction introduction was a function of the prevalence of
associated with the specified pathway. Risk- infected herds, the)prevalence of infected cattle
reduction steps such as inspection and in a herd, and the number of cattle selected
quarantine can be introduced into the model. from a herd. The probability of failing to detect
For example, Yu et al. (1997) created a risk FMD with risk-reduction procedures—such as
assessment model to assess the introduction of farm-level inspection, antemortem and

FMD from the importation of 100 tons of postmortem inspection, and chilling and

deboned beef. Results of the simulation model ~ deboning—also impacted the probability of
showed that the probability of FMD virus introduction.

Figure 3—Scenario tree for risk of disease introduction from imported meat. (Adapred from Miller et

al. 1993)
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OBJECTIVE: PREDICT WHEN AND WHERE A NEW DISEASE WILL OCCUR

Many previously unrecognized infectious
diseases of animals and humans have been
identified in the past decade. Most of these
diseases are zoonotic. Diseases such as severe
acute respiratory syndrome (SARS), Nipah
virus, and postweaning multisystermic wasting
syndrome have spurred interest in investigating
the conditions or factors under which new
infectious diseases emerge and spread. Experts
in various fields, such as infectious disease,
epidemiology, and ecology, have cited the need
for complex and integrated models that would
predict the emergence of new diseases (Wilson
et al. 1994).

Modeling the emergence of a new disease
requires a different approach from that used for
a known disease because historical incidence
data on the new disease do not exist. To date,
research has focused on identifying,
understanding, and modeling the factors
potentially related to new disease emergence,
not on predicting where and when an outbreak
of a new disease will occur. A better
understanding of what factors are associated
with the emergence of new diseases could lead

to interventions to prevent their occurrence.

The following factors were identified in the
Institute of Medicine’s 2003 report “Microbial
Threats to Health” (Smolinski et al. 2003) as
contributing to disease emergence.

Microbial adaptation and change—Microbes,
the agents of infectious disease, are continually
under selective pressure to adapt through

structural and functional genetic changes to

ensure their survival. These genetic changes
often allow microbes to “evade” the host’s
immune system and may allow them to infect

new types of hosts (cross the species barrier).

Host susceptibility to infection—The host’s
ability to evade infection is dependent on many
factors, such as genetics, nutrition, previous or

current infections, health status, and stress level.

Climate and weather—The geographic
distribution and seasonal variation of many
infectious diseases indicate that climate and
weather have an affect on disease agents and
vectors. Disease agents and vectors are
sensitive to temperature, moisture, and other
ambient environmental conditions determined
daily by weather conditions and over long time
periods, by climate. Weather and climate also
may affect host behavior and susceptibility and

impact ecosystems.

Changing ecosystems—Ecologic changes can
result in environmental changes, which in turn
alter pathogen transmission patterns. Microbial
agents that spread by water, air, food, or vectors
or that have an animal reservoir are particularly
sensitive to changes in environment and
ecosystem. Ecologic changes may lead to
increased or decreased populations of disease

reservoirs and vectors.

Economic development and land use—
Human activities result in changes to the
physical environment and often impact an area’s
ecology. Environmental changes resulting from

human activities include deforestation,
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reforestation, and changes to water and land
bodies as a result of dam building. Land-use
changes include cutting down forests for
agriculture or urbanization. These
environmental changes can impact replication
of pathogens and may bring new opportunities
for contact between hosts and agents. For
example, RVF emerged in Senegal after the
opening of the Diama Dam, which created
additional breeding grounds for mosquitoes.

Human demographics and behavior (social
and cultural)—Many current trends in
population characteristics promote disease
emergence. Increased population size and
density provide more opportunities for disease
transmission. An aging population and
increases of immunocompromised individuals
due to chemotherapy, chronic diseases, or
human immunodeficiency virus (HIV) lead to
more disease-susceptible hosts. Social and
cultural dietary practices can promote high-risk
behaviors, such as consumption of raw or
undercooked meat. The virus that causes SARS
18 suspected of transferring from animals to
humans in the live-animal markets of
Guangdong, China. In these markets, many
types of live domestic and wild animals are
brought together for slaughter to meet the
preferences of consumers (Normile and
Enserink 2003). In the United States, the trend
in exotic pet ownership led to the first U.S.
outbreak of monkeypox virus among pet prairie
dogs and humans.

Technology and industry—Technological
advances can have positive and negative
impacts on disease emergence. On the positive

side, new technology can lead to improved

living conditions and therefore better health for
humans and animals. Technology can result in
improved diagnosis and control of disease. On
the negative side, technology can provide new
avenues for disease transmission, such as
through organ and tissue transplantation.
Technology can provide new ecologic niches
for microbes. For example, the bacteria
responsible for Legionnaires’ disease adapted to
air-conditioning cooling towers.

Changes in the livestock industry and in animal
husbandry practices have the potential to impact
disease transmission. The trend toward larger
farms and increased animal density per farm
creates more opportunity for disease
transmission and the potential for
environmental impacts due to the production of
large amounts of manure and waste.
Alternatively, large industrial farming
operations can play a role in reducing disease
transmission risk through disease control
programs, greater control over animal

movement, and biosecurity practices.

International travel and commerce—As
people, animals, animal products, and disease
vectors (e.g., mosquitoes, ticks, rodents) move
around the world, a major pathway for the
spread of infectious human, animal, and
zoonotic diseases is created. History abounds
with examples of disease emergence related to
human migration and animal trade, such as the
spread of plague, smallpox, and FMD, and
more recently, RVF and SARS.

Societal and technological changes over the last
century have led to enormous increases in travel

and trade.
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During the past 50 years, tourism has become (Food and Agriculture Organization of the

the world’s largest industry, with international United Nations, n.d.). From 1989 to 1999, the
tourist arrivals increasing from 25 million in volume of livestock and livestock-product

1950 to nearly 700 million in 2000 (fig.4) exports (other than sheep, goats, and wool) has
(Bridges et al. 2001). risen at annual rates ranging from a low of 0.25
The value of world trade in agricultural percent for ovine meat to a high of more than 14
products has increased from approximately $52 percent for poultry meat, while dairy products
billion in 1970 to about $417 billion in 1999 and pork have increased annually by nearly 5

percent and 6 percent, respectively (Upton
2001).

Figure 4—Trend in world travel international tourist arrivals*, 1950-2000. (Adapted from Bridges et

al 2001; source: World Tourism Organization).
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Breakdowns in public- and animal-health
measures— In some parts of the world, the
breakdowns of human- and animal-health
measures—and the lack of adequate veterinary
infrastructure—have had major impacts on
disease emergence and transmission. A
government’s inability to enforce sanitary
regulations or to provide needed vaccines and
medications contributes to disease transmission.
For example, the lack of funds for vaccines has
led to the recent resurgence of FMD in several
African countries. In addition, slaughtering
unhealthy food animals under unhygienic
conditions can lead to the spread of zoonotic

diseases.

Poverty and social inequality—Lower
socioeconomic status is associated with greater
infectious disease burden due to poor living
conditions, the inability to afford health care,
and other factors. Unhealthy populations also
exert a negative impact on economic

productivity.

War and famine—War, famine, and political
upheaval lead to many factors associated with
disease emergence, such as migration of people
and animals, breakdowns of public- and animal-
health measures, increased susceptibility to
infection, and poverty. For example, political
upheaval in Zimbabwe led to the spread of
livestock animal disease. During the upheaval,
there was no control over animal movement,
animals were unattended, and neither the
government nor livestock owners had money to

buy vaccines.

Lack of political re§olve—To prevent and
control infectious disease, governments,
corporations, health professionals, and private
citizens must work together and have the

political resolve to accomplish the task.

Intent to harm—Terrorist attacks with
biological weapons could lead to the emergence
of disease in human and animal populations.
The intent to harm may spur the creation of
more deadly disease agents through

biotechnology.

While predicting the time and place of the

emergence of a new disease presents many

challenges, a qualitative estimate or ranking of

the risk potential or vulnerability for an

emerging disease might be made by evaluating

the above factors at varying geographic levels,

such as global region, country, or subcountry.

Another approach is to evaluate the

characteristics and practices of a country’s

individual livestock industries, according to

their potential for disease emergence. Important

questions include:

* Is production moving into new areas?

* Are imports and exports changing?

* Are new production systems being used?

* What 1s the degree of interaction between
domestic and wild animals?

* Are there adequate regulatory and biosecurity
safeguards?

* Are identified changes or trends in the
industry moving in the direction of less
disease-emergence potential or more disease-

emergence potential?
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Answers to these questions could help identify
the degree of risk for emerging disease in a
livestock industry and highlight areas where
preventive measures could be taken. For
example, the Agriculture Disaster Research
Institute RoadMap project has identified the

characteristics and practices of the U.S. swine
industry; simulateqd an outbreak situation; and
identified gaps and vulnerabilities in the pork
food chain. The project will develop strategies
to address gaps and vulnerabilities (Slenning
2004).

EARLY WARNING SYSTEMS

Epidemic prevention and control activities can
be initiated by monitoring a wide range of
indicators, from simple surveillance and early
reporting of outbreak detection to complex
forecasting models. These various indicators
can be arranged in a hierarchical system known

as an Early Warning System (EWS).

For example, in Thailand an extensive EWS is
being created for the endemic mosquito-borne
disease dengue fever. The dengue EWS is
comprised of a surveillance model, a risk-map
model, and a forecasting model (fig. 5). The
surveillance model plots incoming surveillance

case data against the long-term average for that

month. Case numbers that exceed 2 standard
deviations from normal are considered cause for
concern. The risk-map model shows the spatial
distribution of incidence rates by administrative
units combined with satellite data on important
environmental variables related to local
variation in risk. The forecasting model is
based on time-series analysis of past case
numbers combined with temperature data
showing within-year cycles and between-year
cycles. The three model components are
projected into the future to make disease
predictions, and this information can be used by
decisionmakers to coordinate disease control

programs (Myers et al. 2000).
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Figure 5-—Dengue EWS for Thailand. (Adapted from Myers et al. 2000)
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The Famine Early Warning System (FEWS)
Network is another example of a successful,
formalized EWS. Although the targeted
outcome is famine and not an infectious
disease, FEWS has many similarities to an
infectious-disease EWS. FEWS is a specialized
information network designed to enhance the
abilities of African countries and regional
organizations to manage the risk of food
insecurity through timely and analytical early
warning and vulnerability information.

FEWS is a partnership-based program
developed and funded in the late 1980s by the
U.S. Agency for International Development.
Information in the network (see http:/
www.fews.net) includes satellite data for early
identification of drought and other weather
conditions, such as floods and cyclones; and

local ground-based information on health,

conflict, or other factors affecting access to
food, types of crops farmers are planting, food
prices at regional markets, and the extent of
malnutrition and HIV/acquired
immunodeficiency syndrome. The analytical
framework used includes a baseline analysis of
internal vulnerability (normal sources of food
and income) combined with an analysis of
external hazards (drought, flood, change in crop
production, etc.) to provide an analysis of risk
of food shortage (outcome). This information is
provided to decisionmakers who can then take
early action to prevent famine. Timely and
accurate information about food security
conditions is also disseminated to the general
public and the media. FEWS has been
successful in preventing serious droughts from
becoming famines in the Sahel, southern Africa.
and Ethiopia through early warning and early

public action.
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CONCLUSION

There is a wide variety of methods to predict
and model infectious-disease emergence.
Choosing the appropriate model type depends
on the objectives and the questions to be
answered, the data that are available, and the
target audience for the model. Before decisions

are made based on model results, the limitations

of the model must be considered. Models are
inherently a simplification of a real situation
and are often developed with imperfect data.
Nevertheless, models can improve our
understanding of the emergence of infectious
diseases, assist in planning disease surveillance
and control strategies, and potentially prevent

epidemics.
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